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Assessing the Application of Cloud-Shadow 
Atmospheric Correction Algorithm on HICO 

Ruhul Amin, David Lewis, Richard W. Gould, Weilin Hou, Adam Lawson, Michael Ondrusek, and Robert Arnone 

Abstract—Several ocean color earth observation satellite sen- 
sors are presently collecting daily imagery, including the Hyper- 
spectral Imager for the Coastal Ocean (HICO). HICO has been 
operating aboard the International Space Station since its installa- 
tion on September 24, 2009. It provides high spatial resolution hy- 
perspectral imagery optimized for the coastal ocean. Atmospheric 
correction, however, still remains a challenge for this sensor, par- 
ticularly in optically complex coastal waters. In this paper, we 
assess the application of the cloud-shadow atmospheric correction 
approach on HICO data and validate the results with the in situ 
data. We also use multiple sets of cloud, shadow, and sunlit pixels 
to correct a single image multiple times and intercompare the 
results to assess variability in the retrieved reflectance spectra. Re- 
trieved chlorophyll values from this intercomparison are similar 
and also agree well with the in situ chlorophyll measurements. 

Index Terms—Atmospheric correction, cloud-shadow, hyper- 
spectral imagery, ocean color, remote sensing. 

I. INTRODUCTION 

ACCURATE estimation of chlorophyll is very important 
for many reasons, including primary production models, 

carbon budgets, hypoxia, and eutrophication. Remote sensing 
has opened an effective way to estimate phytoplankton biomass 
and terrestrial products. Due to the tradeoff between spatial 
resolution, image coverage, and frequency in data acquisition, 
the coarse spatial resolution (1 km) optical sensors, such as the 
Moderate Resolution Imaging Spectroradiometer, are useful at 
continental- and global-scale biomass mappings [1]. However, 
to quantify biomass at local to regional scales, finer spatial 
resolution data are required, such as that provided by the 
Hyperspectral Imager for the Coastal Ocean (HICO). 

The National Aeronautics and Space Administration's Earth 
Observing System and the European Space Agency programs 
provide ready-to-use remote-sensing products that are gener- 
ated by science-based, calibrated, and validated algorithms [2], 
[3]. However, differences exist in these ready-to-use standard 
products due to sensor characteristics, product generation algo- 
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rithms, etc. Atmospheric correction is one of the biggest chal- 
lenges for ocean color remote sensing, particularly in coastal 
waters. Different atmospheric correction methods on the same 
data can produce significantly different ocean color products 
such as water-leaving radiance {Lw) [4], [5]. 

The fundamental measurement in ocean color remote sensing 
is the water-leaving radiance, the upwelling spectral distri- 
bution of radiance from the ocean. Geophysical parameters 
such as chlorophyll can be retrieved from this water-leaving 
signal since it contains information about the optically active 
components in the water column. However, only about 10% of 
the total signal measured by the ocean color sensors contains 
information about the waters; the rest represents scattering from 
aerosols and air molecules [6]. The goal of the atmospheric 
correction over the ocean is to remove contributions from the 
atmosphere and reflection from the sea surface from the top-of- 
atmosphere (TOA) radiance recorded by the sensor, leaving Lw. 

Gordon and Wang [7] developed an atmospheric correction 
scheme for the open ocean where the aerosol contribution 
is estimated using TOA radiance/reflectance signals obtained 
from near-infrared (NIR) bands. This approach assumes that the 
ocean is optically black in the NIR bands due to the strong water 
absorption. Although this technique works well in the open 
ocean, it breaks down in optically complex coastal waters since 
the black pixel approximation no longer holds true due to strong 
reflections from organic and inorganic paniculate matters. If 
water-leaving radiance is not negligible in the NIR bands, then 
the retrieved aerosol loading will be overestimated, resulting in 
underestimated or even negative water-leaving radiances. The 
NIR-iterative procedure for the coastal waters [8] can reduce 
the number of pixels with negative retrievals in the coastal 
waters. More recently, another atmospheric correction approach 
for coastal water was proposed, which uses short-wave infrared 
(SWIR) bands [9]. This approach is based on the fact that 
ocean water absorbs strongly in this spectral region, and the 
contributions of the in-water constituents are negligible and 
can safely be considered dark. However, HICO does not have 
these SWIR channels. Furthermore, the atmospheric reflectance 
itself is significantly weaker in the SWIR region, requiring 
higher sensor signal-to-noise ratio (SNR). In such situations, 
the cloud-shadow atmospheric corrections [10], [11] can be 
very helpful, but this approach is limited to images that include 
at least one thick cloud and shadow pair Thus, this approach 
cannot always be used for atmospheric correction. Since this 
approach depends on the assumption that atmosphere is nearly 
uniform throughout the image, it is more appropriate for sen- 
sors with high spatial resolutions such as HICO. If all of the 
conditions are right for an image, the cloud-shadow approach 
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can offer some advantages over the traditional approaches. For 
example, one of the major advantages of this approach is that 
the TOA radiances from the cloud, shadow, and sunlit pixels 
come from the same sensor, with all radiance components 
collected nearly simultaneously. As a result, the derived remote- 
sensing reflectance does not depend on the absolute radiance 
value since the sensor's response function (calibration factor) 
is canceled out [10]. This is very useful for sensors with high 
or unknown radiometric uncertainties. Currently, the cloud- 
shadow atmospheric correction is done by manually selecting 
pixels, which requires knowledge about TOA radiance. Also, 
the process can be somewhat time-consuming. Automating the 
scheme can be beneficial for ocean color remote sensing. Using 
the recently developed cloud-shadow detection technique over 
water [12], there have been some efforts to automate the ap- 
proach [13]. However, automation still remains a challenge due 
to difficulties such as identifying thin clouds, cloud edge pixels, 
shadow edge pixels, homogeneous waters, etc. 

In this paper, we apply the cloud-shadow atmospheric cor- 
rection on HICO data and use in situ data to validate the 
results. We use in situ chlorophyll data from the literature and 
remote-sensing reflectance from coincident Aerosol Robotic 
Network-Ocean Color (AERONET-OC) sites and Hyperpro 
measurements to compare with HICO cloud-shadow atmo- 
spherically corrected data. We also use multiple sets of cloud, 
shadow, and sunlit pixels to correct the same image multiple 
times and intercompare the results. 

II. MATERIALS AND METHOD 

HICO is the first hyperspectral imager specifically made for 
environmental characterization of the coastal ocean from space. 
It has been operating aboard the International Space Station 
(ISS) since its installation on September 24, 2009 [14], [15]. 
HICO provides hyperspectral images at 100-m resolution opti- 
mized for the coastal ocean. It collects radiance at 128 contigu- 
ous spectral channels from 350- to 1070-nm range. However, it 
is most sensitive in the spectral wavelengths ranging from 400 
to 900 nm, which are the most utilized spectral region for ocean 
color studies. Due to altitude and inclination of its orbit, HICO 
is limited to cover about 80% of the Earth's surface. However, 
this covered surface includes all tropical and most temperate 
coastal regions. Due to scene selection and data transfer issues, 
the sensor acquisition is limited in practice to one scene per or- 
bit. HICO has SNR greater than 200, which enables retrieval of 
environmentally relevant quantities. The HICO data flow from 
the ISS provides a maximum of 15 scenes per day, and the sen- 
sor is managed by the U.S. Naval Research Laboratory (NRL). 

We acquired a HICO scene with cloud-shadow over the 
productive waters of the Azov Sea, Russia, on July 13, 2010. 
The in situ chlorophyll values for this scene were taken from 
[16], where the values were determined analytically from water 
samples collected during the summer of 2010 in Taganrog Bay 
and the Azov Sea. We also acquired HICO scenes with cloud- 
shadow over Venice, Italy, on August 30, 2011, and over 
northern Gulf of Mexico on March 13, 2012, for which in situ 
AERONET-OC data were also acquired from the Acqua Alta 
Oceanographic Tower (AAOT) and the Wave-Current-Surge 

Information System sites, respectively. An additional HICO 
scene with cloud-shadow was acquired over Chesapeake Bay 
on October 20, 2009, for which in situ Hyperpro data were 
acquired as well. 

III. CLOUD-SHADOW ATMOSPHERIC CORRECTION 

The cloud-shadow atmospheric correction method [10], [11] 
is appropriate for high-spatial resolution sensors such as HICO. 
This approach uses cloud and shadow pixels along with nearby 
sunlit pixels with similar optical properties. First, La (A), which 
represents the radiance from the atmosphere and sea surface, is 
estimated from a pair of adjacent pixels that are in and out of a 
cloud-shadow while ignoring the slight (< 5%) differences in 
the remote-sensing reflectances (i?rs(A)) under the two regions 
[17]-[20] 

La{\) = Lr (A) 
1 - Efy{X)/E,{X) 

(1) 

where L(""(A) represents radiance from the sunlit pixel 
and L(^*(A) represents radiance from the shadow pixel. 

E^ ■^{X)/Ed{X) is the ratio between the downwelling sky irra- 
diance to total downwelling irradiance which can be estimated 
using a radiative transfer model such as Radtran [21] for a 
given location and time. The value of Ef^^{X)/Ed{X) depends 
on atmospheric conditions such as visibility, ozone depth, etc. 
However, since E^J^^{X)/Ed{X) is applied on the difference 
between total radiance measured over the sunlit pixel (Lf"" (A)) 
and total radiance measured over the shadow pixel {Lf^'"{X)) 
and since this difference is significantly smaller than Lf""(A), 

errors in Ef^{X)/Ed{X) have only very limited effects on 

La{X) estimation [10]. Since the errors in Ef^{X)/Ed{X) 

estimation have negligible effects [10], Ef^{X)/Ed{X) was 
calculated for this study with the default atmospheric param- 
eters in Radtran [21]. According to [10], once La(X) is known, 
the remote-sensing reflectance {R.rs{X)) at any pixel can be 
calculated from 

Rrs{X) 
Lt{X) - L„(A) 

(2) 
Lf'^{X)-La{X) 

where Lf^{X) is the total radiance over the cloud pixel and p is 
the remote-sensing reflectance of the observed cloud. The value 
of p was determined according to [10] from a clear water pixel 
by assuming i?^5(550 nm) = 0.002 sr'^ [22]. 

Remote-sensing applications such as the cloud-shadow 
scheme that are developed using dark and bright targets suffer 
from adjacency effects. Adjacency effect reduces the apparent 
surface contrast by decreasing radiance over bright pixels and 
increasing the brightness of the dark pixels. Edge pixels of the 
bright and dark targets are usually contaminated by the adja- 
cency effects. These contaminated pixels could make it very 
challenging to quantify the accuracy of the atmospherically 
corrected data. To minimize errors due to adjacency effects, we 
selected pixels from around the center of the cloud and shadow 
regions by careful visual inspection of the spectra. Sunlit pixels 
were also carefully selected to ensure they were far enough 
from the shadow and cloud regions to minimize adjacency 
effects. 
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Fig. 1. HICO imagery from July 13, 2010, acquired over the Sea of Azov, (a) True color image overlaid with in situ point measurement locations (A-H) and 
cloud, shadow, and sunlit pixels used for correction of the atmospheric effects. The TOA radiances in raw counts from multiple sets of cloud shadow and sunlit 
pixels, (b) Set-1. (c) Set-2. (d) Set-3. 

IV. RESULTS AND DISCUSSION 

The cloud-shadow atmospheric correction was performed 
on the HICO image [Fig. 1(a)] from July 13, 2010, over 
the Azov Sea. TOA radiances (in raw counts) from multiple 
sets of cloud, shadow, and sunlit pixels were taken from the 
regions labeled with set-1, set-2, and set-3 in Fig. 1(a). The 
radiance spectra from set-1, set-2, and set-3 are shown in 
Fig. 1 (b)-(d), respectively, where the cloud spectra are shown 
in red, the shadow spectra are shown in green, and the sunlit 
spectra are in blue. Using these three sets of radiances, we 
corrected the Sea of Azov scene for the atmosphere, which 
resulted in three sets of i?.rs(A). We also took an average of 
these RrsW and generated a fourth set of RrsW- Fig. 2 
compares the four sets of results at eight in situ locations [A-H 
in Fig. 1(a)]. The blue, green, and red spectra are retrieved 
using set-1, set-2, and set-3, respectively, while the cyan is 
the average of the three sets. These reflectance spectra appear 
as typically expected reflectance spectra from chlorophyll-rich 

waters. For example, the red spectral region is very important 
for remote sensing of coastal waters due to several spectral 
features unique to phytoplankton chlorophyll-a (absorption, 
scattering, and fluorescence) that takes place in this region. 
In the reflectance spectra of chlorophyll-rich water bodies, a 
distinct peak is observed somewhere in the wavelength range 
of 690-720 nm as can be seen in Fig. 2. This is mainly due to 
the relative minimum in total absorption (chlorophyll and water 
absorption), while the fluorescence term has small but measur- 
able effects. The increase in the peak height is accompanied 
by a shift in the position toward the longer wavelengths with 
increasing chlorophyll, while the peak of the phytoplankton 
fluorescence has a permanent position at 685 nm. The effect 
of the chlorophyll fluorescence in eutrophic turbid waters is to 
fill the 670-nm reflectance trough and to augment the shorter 
wavelength shoulder of the 690-720 nm reflectance peak. For 
low chlorophyll concentrations, the region near 685 nm is 
considered the most appropriate feature of gaining information 
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Fig. 2.    Retrieved remote-sensing reflectance from HICO using multiple sets of cloud, shadow, and sunlit pixels. Letters A-H at the top of each subfigure indicate 
station name along with in situ chlorophyll concentrations. 
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on chlorophyll due to natural fluorescence signal [23]. How- 
ever, for high chlorophyll concentration, the red-NIR peak can 
provide information about the concentration [24]. The example 
shown here has very high concentration of chlorophyll, where 
the minimum, maximum, median, and mean chlorophyll con- 
centrations of the in situ stations were 19.67, 93.14, 63.86, and 
70.6 mg/m^, respectively [16]. Due to these high chlorophyll 
concentrations, a pronounced red-NIR peak is expected in the 
reflectance which can be seen clearly in Fig. 2. Furthermore, an 
increase in the peak height and shift of the peak position toward 
longer wavelength is also expected with increasing chlorophyll 
[23]. This can be seen in Fig. 2, where the spectra with the 
lowest chlorophyll concentration (station H) have the smallest 
red-NIR peak while the spectra with the highest chlorophyll 
concentration (station C) have the largest peak. The slight shift 
of the peak position is also noticeable in Fig. 2, where the lowest 
chlorophyll spectra (station H) has peak around 697 nm while 
the highest chlorophyll spectra (station C) has peak around 
709 nm. This demonstrates that the cloud-shadow atmospheric 
correction preserves the red-NIR peak characteristic, indicating 
that the shapes of the reflectance spectra are preserved with 
this approach. The shift of the peak position also demonstrates 
the value of the hyperspectral measurements that provides fine- 
resolution remote-sensing reflectance due to various optically 
active constituents in the waters. Excellent agreement in spec- 
tral shape can be seen in Fig. 2. However, there are slight dif- 
ferences in the spectral magnitudes. This is probably due to the 
residual contributions from the sky and the sea surface. In [10], 
it was suggested to remove a spectrally constant value from the 
calculated remote-sensing reflectance to obtain an average of 
zero for the spectral range 810-840 nm, where contributions 
from water are considered null [25]. However, in coastal waters, 
the NIR contribution may not be zero, and most importantly, 
the HICO results are very noisy in this region. Because of the 
noise, forcing the NIR reflectance to zero changes the spectral 
reflectance values considerably pixel to pixel, hence resulting 
in noisy retrieved products. Thus, we did not do any residual 
correction for this study. However, making accurate residual 
correction may improve the matchups. 

The three-band reflectance model originally developed for 
estimating pigment contents in terrestrial vegetation [24] can 
also be used for chlorophyll estimation in the turbid waters 
[26]. For the July 13, 2010, Azov Sea scene, Gitelson <?/«/. [16] 
determined the optimal HICO bands for the three-band model 
which are located at wavelengths of 684, 700, and 720 nm. The 
three-band red-NIR chlorophyll retrieval algorithm for HICO 
is expressed as 3_band = [i?.^^(084)-i - /?^^(7oo)-i] x ^^^(^^o), 
and it was found to agree well with the in situ chlorophyll 
[16]. This previous study [16], however, used the hyperspectral 
atmospheric correction algorithm (ATREM) [27], where esti- 
mation of aerosol contribution from TOA measurement using 
NIR bands could be an issue. Atmospheric corrections that use 
NIR band to estimate aerosol contributions often fail in the 
optically complex turbid waters because of higher turbidities 
which result in increased elastic reflectance and significant 
radiance contributions in NIR bands. Since HICO does not 
have SWIR channels and black pixel assumption does not hold 
true in turbid waters, aerosol estimation over turbid waters 
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Fig. 3. In siiu chlorophyll versus HlCO-retrieved chlorophyll using the three- 
band model from multiple sets of/irs(A). 

is very challenging. Inaccurate aerosol estimation can lead to 
significant errors in retrieved ocean color products. However, 
the cloud-shadow atmospheric correction approach does not 
require any knowledge about aerosol contribution and can 
overcome some of these issues faced by NIR approaches. 

To evaluate the performance of the four set results shown in 
Fig. 2, we compared the retrieved chlorophyll from the three- 
band reflectance model at the eight in situ locations with the 
in situ chlorophyll concentrations. The results are shown in 
Fig. 3. Very strong correlations can be seen between the retrieved 
and in situ chlorophyll values, where r^ = 0.94 approximately 
for all four sets of results. Since the spectral magnitude is slightly 
different, the coefficients shown in Table I fluctuate slightly. 
The relationships developed from different sets of RrsW and 
in situ chlorophyll are shown in Table I. These relationships 
were applied to all four sets of Rrs (A) to retrieve chlorophyll, 
and their performances were evaluated. Table I summarizes 
the results, where the root-mean-square error (rmse) is defined 

as RMSE= ^Etf (Chhn situ(i) -Chlmco{i)Y/N and the 
mean absolute percentage difference (APD in percent) is def- 

ined as APD=im{\/N)Y:Zi{\ChU situ{i)-Chlmco{i)\/ 
Chlin situ{i)), where Chlm situ{i) and C/I/HICO(*) are in situ 
chlorophyll and HICO-derived chlorophyll values of the ith 
matchup, respectively, and A'^ is the total number of matchup 
pairs. For all four estimated HICO chlorophyll products, the 
rmse values ranged from 5.79 to 10.10 mg/m^, while the APD 
values ranged from 9.91 % to 14.32%, showing a good retrieval. 
However, the data set that we are using is very small, with a 
chlorophyll range higher than typical coastal waters. Thus, to 
get more robust uncertainty values, a larger data set with a more 
diverse chlorophyll range is necessary. 

We also compared HICO cloud-shadow atmospherically 
corrected data with the in situ AERONET-OC data from the 
Venice AAOT and northern Gulf of Mexico WaveCIS sites on 
August 30, 2011, and March 13, 2012, respectively. For the 
AAOT site, the HICO image was acquired at 13:44 GMT, while 
the in situ AERONET-OC measurement was made at 13:45 
GMT. For the WaveCIS site, the HICO image was acquired at 
20:54 GMT, while the in situ AERONET-OC measurement was 
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Fig. 4. Comparison of cloud-shadow-retrieved HICO RrsW versus Hyper- 
pro and AERONET-OC RrsW- 

made at 16:27 GMT. Fig. 4 compares remote-sensing reflec- 
tance spectra derived from HICO to those from in situ mea- 
surements. The spectra represented by the red and green solid 
lines were collected using Hyperpro from the Chesapeake Bay 
on October 20, 2009, while the cyan spectra (dashed line with 

solid circle) and blue spectra (dashed line with solid squares) 
were acquired from AAOT and WaveCIS sites, respectively. 
Reasonable agreement, in both spectral shapes and magnitudes, 
between HICO and in situ reflectances are obtained for these 
locations. As mentioned before, the residual contributions from 
the sky and the sea surface were not removed due to nonneg- 
ligible water contribution in the NIR region from the coastal 
waters. However, making accurate residual correction could im- 
prove the matchups particularly between Hyperpro and HICO 
spectra. 

Even though the cloud-shadow atmospheric correction pro- 
vides reasonably well results, it is a very limited approach. 
It requires a thick cloud pixel and a nearby thick shadow 
pixel where optical properties of the water in the shadow and 
neighboring sunlit pixels must be nearly identical. If the cloud, 
shadow, and sunlit pixels are not selected properly, the results 
could be spurious. Since this approach uses bright and dark 
targets, contaminated pixels from adjacency effect also need to 
be avoided. Appropriate cloud, shadow, and sunlit pixel selec- 
tion is extremely important for the success of this approach. 
However, to our knowledge, there is no standard procedure to 
select these pixels from the TOA raw radiance counts. Thus, 
we carefully visually inspected true color images using ENVI 
image enhancement tools and selected appropriate pixels for 
each scene. 
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V. CONCLUSION 

In this paper, we have investigated the apphcability of 
cloud-shadow atmospheric correction on HICO data. Our anal- 
yses showed that ocean color products such as remote-sensing 
reflectance and chlorophyll retrieved from HICO imagery using 
cloud-shadow atmospheric correction method agree well with 
in situ data. However, it is a very limited approach for which 
success depends on the selection of the appropriate cloud, 
shadow, and sunlit pixels. Studies are necessary to come up 
with standards that qualify certain pixels as usable pixels that 
can be used to correct for the atmosphere. 
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